Aliverti, E., Arellano-Valle, R.B., Kahrari, F. & Scarpa, B. (2023). A flexible two-piece normal dynamic linear model. Computational Statistics
@article{arellano23,title={A flexible two-piece normal dynamic linear model},author={Aliverti, Emanuele and Arellano-Valle, Reinaldo B. and Kharari, Fereshteh and Scarpa, Bruno},year={2023},journal={Computational Statistics},doi={doi.org/10.1007/s00180-023-01355-3},}
SPL
Conjugate priors and bias reduction for logistic regression models
Rigon, T., & Aliverti, E. (2023). Conjugate priors and bias reduction for logistic regression models. Statistics & Probability Letters, 202, 109901.
@article{Rigon-bias23,title={Conjugate priors and bias reduction for logistic regression models},author={Rigon, Tommaso and Aliverti, Emanuele},journal={Statistics and Probability Letters},doi={doi.org/10.1016/j.spl.2023.109901},year={2023},}
2022
SIM
Dynamic modeling of the Italians’ attitude towards Covid-19
Aliverti, E, Russo, M. (2022). Dynamic modeling of the Italians’ attitude towards Covid-19. Statistics in Medicine. 41 (26): 5189– 5202
@article{Aliverti-covid22,title={Dynamic modeling of the Italians' attitude towards Covid-19},author={Aliverti, Emanuele and Russo, Massimiliano},journal={Statistics in Medicine},year={2022},volume={41},number={26},pages={5189-5202},doi={https://doi.org/10.1002/sim.9560},}
JRSS-A
Dynamic modelling of mortality via mixtures of skewed distribution functions
Aliverti, E., Mazzuco, S. & Scarpa, B. (2022) Dynamic modelling of mortality via mixtures of skewed distribution functions. Journal of the Royal Statistical Society: Series A, 185: 1030–1048
@article{Aliverti-dysm22,author={Aliverti, Emanuele and Mazzuco, Stefano and Scarpa, Bruno},title={Dynamic modelling of mortality via mixtures of skewed distribution functions},journal={Journal of the Royal Statistical Society: Series A (Statistics in Society)},volume={185},number={3},pages={1030-1048},keywords={Bayesian inference, dynamic modelling, mixture model, skew-normal distribution},doi={https://doi.org/10.1111/rssa.12808},year={2022},}
SMA
When does morbidity start? An analysis of changes in morbidity between 2013 and 2019 in Italy
Andrea Pastore, Stefano Tonellato, Emanuele Aliverti and Stefano Campostrini
Pastore, A., Tonellato, S.F., Aliverti, E. and Campostrini. S. (2022) When does morbidity start? An analysis of changes in morbidity between 2013 and 2019 in Italy. Stat Methods Appl
@article{Pastore-passi22,title={When does morbidity start? An analysis of changes in morbidity between 2013 and 2019 in Italy},author={Pastore, Andrea and Tonellato, Stefano and Aliverti, Emanuele and Campostrini, Stefano},journal={Statistical Methods \& Applications},year={2022},volume={(in press)},doi={https://doi.org/10.1007/s10260-022-00668-9},}
JCGS
Stratified Stochastic Variational Inference for High-Dimensional Network Factor Model
Aliverti, E. & Russo, M. (2022) Stratified Stochastic Variational Inference for High-Dimensional Network Factor Model, Journal of Computational and Graphical Statistics, 31:2, 502-511
@article{aliverti-svilf22,author={Aliverti, Emanuele and Russo, Massimiliano},title={Stratified Stochastic Variational Inference for High-Dimensional Network Factor Model},journal={Journal of Computational and Graphical Statistics},volume={31},number={2},pages={502-511},year={2022},publisher={Taylor & Francis},doi={10.1080/10618600.2021.1984929},url={https://doi.org/10.1080/10618600.2021.1984929},}
AOAS
Composite mixture of log-linear models with application to psychiatric studies
Aliverti, E. and Dunson, D. B. (2022) "Composite mixture of log-linear models with application to psychiatric studies." Ann. Appl. Stat. 16 (2) 765 - 790
@article{Aliverti-mills22,author={Aliverti, Emanuele and Dunson, David B.},title={{Composite mixture of log-linear models with application to psychiatric studies}},volume={16},journal={The Annals of Applied Statistics},number={2},publisher={Institute of Mathematical Statistics},pages={765 -- 790},keywords={Bayesian modelling, categorical data, Contingency table, log-linear models, mixture model, Psychiatric profiles},year={2022},doi={10.1214/21-AOAS1515},url={https://doi.org/10.1214/21-AOAS1515},}
2021
JRSS-A
Removing the influence of group variables in high-dimensional predictive modelling
Emanuele Aliverti, Kristian Lum, James E. Johndrow and David B. Dunson
Journal of the Royal Statistical Society: Series A (Statistics in Society), 2021
Aliverti, E., Lum, K., Johndrow, J.E. and Dunson, D.B. (2021) Removing the influence of group variables in high-dimensional predictive modelling. Journal of the Royal Statistical Society: Series A, 184: 791-811
@article{Aliverti-sog21,author={Aliverti, Emanuele and Lum, Kristian and Johndrow, James E. and Dunson, David B.},title={Removing the influence of group variables in high-dimensional predictive modelling},journal={Journal of the Royal Statistical Society: Series A (Statistics in Society)},volume={184},number={3},pages={791-811},keywords={batch effects, constrained optimization, criminal justice, neuroscience, orthogonal predictions, predictive modelling, singular value decomposition},doi={https://doi.org/10.1111/rssa.12613},url={https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12613},year={2021},}
2020
BIOINF
Projected t-SNE for batch correction
Emanuele Aliverti, Jeffrey L. Tilson, Dayne L. Filer, Benjamin Babcock, Alejandro Colaneri, Jennifer Ocasio, Timothy R. Gershon, Kirk C. Wilhelmsen and David B. Dunson
Emanuele Aliverti, Jeffrey L Tilson, Dayne L Filer, Benjamin Babcock, Alejandro Colaneri, Jennifer Ocasio, Timothy R Gershon, Kirk C Wilhelmsen, David B Dunson (2020) Projected t-SNE for batch correction, Bioinformatics, Volume 36, Issue 11, Pages 3522–3527
@article{Aliverti-tsne20,author={Aliverti, Emanuele and Tilson, Jeffrey L. and Filer, Dayne L. and Babcock, Benjamin and Colaneri, Alejandro and Ocasio, Jennifer and Gershon, Timothy R. and Wilhelmsen, Kirk C. and Dunson, David B.},title={{Projected t-SNE for batch correction}},journal={Bioinformatics},volume={36},number={11},pages={3522-3527},year={2020},issn={1367-4803},doi={10.1093/bioinformatics/btaa189},}
2019
SAM
Spatial modeling of brain connectivity data via latent distance models with nodes clustering
Aliverti, E, Durante, D. (2019) Spatial modeling of brain connectivity data via latent distance models with nodes clustering. Stat Anal Data Min: The ASA Data Sci Journal. 12: 185–196
@article{Aliverti-brain19,author={Aliverti, Emanuele and Durante, Daniele},title={Spatial modeling of brain connectivity data via latent distance models with nodes clustering},journal={Statistical Analysis and Data Mining: The ASA Data Science Journal},volume={12},number={3},pages={185-196},keywords={latent space model, mixture of Gaussians prior, spatial effect, structural brain network},doi={https://doi.org/10.1002/sam.11412},url={https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11412},year={2019},}